28 research outputs found

    Potential Errors and Test Assessment in Software Product Line Engineering

    Full text link
    Software product lines (SPL) are a method for the development of variant-rich software systems. Compared to non-variable systems, testing SPLs is extensive due to an increasingly amount of possible products. Different approaches exist for testing SPLs, but there is less research for assessing the quality of these tests by means of error detection capability. Such test assessment is based on error injection into correct version of the system under test. However to our knowledge, potential errors in SPL engineering have never been systematically identified before. This article presents an overview over existing paradigms for specifying software product lines and the errors that can occur during the respective specification processes. For assessment of test quality, we leverage mutation testing techniques to SPL engineering and implement the identified errors as mutation operators. This allows us to run existing tests against defective products for the purpose of test assessment. From the results, we draw conclusions about the error-proneness of the surveyed SPL design paradigms and how quality of SPL tests can be improved.Comment: In Proceedings MBT 2015, arXiv:1504.0192

    Numerical study of tearing mode seeding in tokamak X-point plasma

    Get PDF
    A detailed understanding of island seeding is crucial to avoid (N)TMs and their negative consequences like confinement degradation and disruptions. In the present work, we investigate the growth of 2/1 islands in response to magnetic perturbations. Although we use externally applied perturbations produced by resonant magnetic perturbation (RMP) coils for this study, results are directly transferable to island seeding by other MHD instabilities creating a resonant magnetic field component at the rational surface. Experimental results for 2/1 island penetration from ASDEX Upgrade are presented extending previous studies. Simulations are based on an ASDEX Upgrade L-mode discharge with low collisionality and active RMP coils. Our numerical studies are performed with the 3D, two fluid, non-linear MHD code JOREK. All three phases of mode seeding observed in the experiment are also seen in the simulations: first a weak response phase characterized by large perpendicular electron flow velocities followed by a fast growth of the magnetic island size accompanied by a reduction of the perpendicular electron velocity, and finally the saturation to a fully formed island state with perpendicular electron velocity close to zero. Thresholds for mode penetration are observed in the plasma rotation as well as in the RMP coil current. A hysteresis of the island size and electron perpendicular velocity is observed between the ramping up and down of the RMP amplitude consistent with an analytically predicted bifurcation. The transition from dominant kink/bending to tearing parity during the penetration is investigated

    Domain-Centered Product Line Testing

    Get PDF
    Die Ansprüche von Kunden an neue (Software-)Produkte wachsen stetig. Produkte sollen genau auf die einzelnen Kundenwünsche zugeschnitten sein, sodass der Kunde genau die Funktionalität erhält und bezahlt die er benötigt. Hersteller reagieren auf diese gestiegenen Ansprüche mit immer mehr Varianten in denen sie ihre Produkte ihren Kunden anbieten. Die Variantenvielfalt hat in solchem Maß zugenommen, dass selbst in Massen gefertigte Produkte heute als Unikate produziert werden können. Neue Methoden wie Produktlinienentwicklung unterstützen die Entwicklung solcher variantenreicher Systeme. Während der Aufwand für die Entwicklung neuer Varianten nun sinkt, profitiert die Qualitätssicherung nicht vom Effizienzgewinn der Entwicklung. Im Gegenteil: Insbesondere beim Test wird zunächst jede Variante wie ein einzelnes Produkt behandelt. Bei variantenreichen Systemen ist dies aufwandsbedingt jedoch nicht mehr möglich. Die in dieser Arbeit vorgestellten Testentwurfsmethoden berücksichtigen die Variantenvielfalt in besonderem Maße. Bisher wurden, nach einer Stichprobenauswahl zur Reduktion des Testaufwands, die Testfälle auf Basis der konkreten Produkte entworfen. Statt nun auf Basis konkreter Produkte werden in dieser Arbeit zwei Ansätze vorgestellt, die die Phase des Testentwurfs auf die Produktlinienebene heben. Die bei Anwendung dieser Methoden entstehenden Testfälle enthalten, je nach Inhalt, Freiheitsgrade bzgl. ihrer Anforderungen an eine Variante, sodass ein Testfall auf ein oder mehrere Varianten angewendet wird. Ausgehend von solchen Testfällen werden in dieser Arbeit neue Kriterien zur Stichprobenauswahl entwickelt. Mit diesen Kriterien kann der Umfang der Stichprobe, aber auch Eigenschaften der zu testenden Varianten bzgl. eines gegebenes Testziel optimiert werden. So ist es möglich, z.B. sehr wenige oder sehr unterschiedliche Varianten zum Test auszuwählen. Insgesamt werden in dieser Arbeit fünf Kriterien definiert und auf ihr Fehleraufdeckungspotenzial untersucht. Zu diesem Zweck werden neue Bewertungskriterien zur Fehleraufdeckungswahrscheinlichkeit von Produktlinientests etabliert. Somit ist erstmalig eine quantitative sowie qualitative Bewertung von Produktlinientests möglich. Die Ergebnisse der vorgestellten Methoden und Auswahlkriterien werden sowohl untereinander evaluiert, als auch konventionellen Testmethoden für Produktliniensysteme gegenübergestellt. An vier Beispielen unterschiedlicher Gro{\"ss}e werden die in dieser Arbeit vorgestellten Methoden evaluiert.Consumer expectations of (software-)products are growing continuously. They demand products that fit their exact needs, so they pay only for necessary functionalities. Producers react to those demands by offering more variants of a product. Product customization has reached a level where classically mass produced goods, like cars, can be configured to unique items. New paradigms facilitate the engineering of such variant-rich systems and reduce costs for development and production. While development and production became more efficient, quality assurance suffers from treating each variant as a distinct product. In particular, test effort is affected, since each variant must be tested sufficiently prior to production. For variant-rich systems this testing approach is not feasible anymore. The methods for test design presented in this thesis overcome this issue by integrating variability into the test design process. The resulting test cases include requirements for variants, which must be fulfilled to execute the test successfully. Hence multiple variants may fulfill these requirements, each test case may be applicable to more than only one variant. Having test cases with requirements enables sampling subsets of variants for the purpose of testing. Under the assumption that each test case must be executed once, variants can be sampled to meet predefined test goals, like testing a minimal or diverse subset of variants. In this thesis, five goals are defined and evaluated by assessing the tests for their fault detection potential. For this purpose, new criteria for assessing the fault detection capability of product line tests are established. These criteria enable quantitative as well as qualitative assessment of such test cases for the first time. The results of the presented methods are compared with each other and furthermore with state of the art methods for product line testing. This comparison is carried out on four examples of different sizes, from small to industry-grade

    Top-Down and Bottom-Up Approach for Model-Based Testing of Product Lines

    No full text
    Systems tend to become more and more complex. This has a direct impact on system engineering processes. Two of the most important phases in these processes are requirements engineering and quality assurance. Two significant complexity drivers located in these phases are the growing number of product variants that have to be integrated into the requirements engineering and the ever growing effort for manual test design. There are modeling techniques to deal with both complexity drivers like, e.g., feature modeling and model-based test design. Their combination, however, has been seldom the focus of investigation. In this paper, we present two approaches to combine feature modeling and model-based testing as an efficient quality assurance technique for product lines. We present the corresponding difficulties and approaches to overcome them. All explanations are supported by an example of an online shop product line

    Image Quality of Digital Direct Flat-Panel Mammography Versus an Indirect Small-Field CCD Technique Using a High-Contrast Phantom

    Get PDF
    Objective. To compare the detection of microcalcifications on mammograms of an anthropomorphic breast phantom acquired by a direct digital flat-panel detector mammography system (FPM) versus a stereotactic breast biopsy system utilizing CCD (charge-coupled device) technology with either a 1024 or 512 acquisition matrix (1024 CCD and 512 CCD). Materials and Methods. Randomly distributed silica beads (diameter 100–1400 m) and anthropomorphic scatter bodies were applied to 48 transparent films. The test specimens were radiographed on a direct digital FPM and by the indirect 1024 CCD and 512 CCD techniques. Four radiologists rated the monitor-displayed images independently of each other in random order. Results. The rate of correct positive readings for the “number of detectable microcalcifications” for silica beads of 100–199 m in diameter was 54.2%, 50.0% and 45.8% by FPM, 1024 CCD and 512 CCD, respectively. The inter-rater variability was most pronounced for silica beads of 100–199 m in diameter. The greatest agreement with the gold standard was observed for beads >400 m in diameter across all methods. Conclusion. Stereotactic spot images taken by 1024 matrix CCD technique are diagnostically equivalent to direct digital flat-panel mammograms for visualizing simulated microcalcifications >400 m in diameter

    T cell-specific overexpression of TGFß1 fails to influence atherosclerosis in ApoE-deficient mice.

    Get PDF
    Clinical data have indicated a negative correlation between plasma TGFß1 concentrations and the extent of atherosclerosis and have thus led to the hypothesis that the pleiotropic cytokine may have anti-atherogenic properties. T-cells are currently discussed to significantly participate in atherogenesis, but the precise role of adaptive immunity in atherogenesis remains to be elucidated. TGFß1 is known to strongly modulate the function of T-cells, however, inhibition of TGFß1 signalling in T-cells of atherosclerosis-prone knock-out mice failed to unequivocally clarify the role of the cytokine for the development of atherosclerosis. In the present study, we thus tried to specify the role of TGFß1 in atherogenesis by using the murine CD2-TGFß1 transgenic strain which represents a well characterized model of T-cell specific TGFß1 overexpression. The CD2-TGFß1 transgenic mice were crossed to ApoE knock-out mice and quantity and quality of atherosclerosis regarding number of macrophages, smooth muscle cells, CD3 positive T-cells and collagen was analyzed in CD2-TGFß1 ApoE double mutants as well as non-transgenic ApoE controls on both normal and atherogenic diet of a duration of 8, 16 or 24 weeks, respectively. In all experimental groups investigated, we failed to detect any influence of TGFß1 overexpression on disease. Total number of CD3-positive T-lymphocytes was not significantly different in atherosclerotic lesions of CD2-TGFß1 ApoE(-/-) females and isogenic ApoE(-/-) controls, even after 24 weeks on the atherogenic diet. The synopsis of these data and our previous study on TGFß1 overexpressing macrophages suggests that potential effects of TGFß1 on atherosclerosis are most probably mediated by macrophages rather than T-cells
    corecore